

Pediatric Traumatic Brain Injury: Pre-Transport Stabilization

Reid WD Farris, MD MS
Associate Professor, U. Washington
Pediatric Critical Care Medicine
Seattle Children's | Harborview Medical Center

Objectives

- Define Pediatric Traumatic Brain Injury (TBI)
- Review the pathophysiology of Traumatic Brain Injury
- Review treatment guidelines & supportive therapies indicated for initial management of Pediatric TBI
- Review pre-hospital predictors of poor outcome

Glasgow Coma Scale

- 6 obeys commands
- 5 localizes pain
- 4 withdrawal from pain
- 3 flexion response
- 2 extension response
- 1 none

Verbal Response

- 5 oriented
- 4 confused
- 3 inappropriate words
- 2 incomprehensible words
- 1 none

Eye Response

- 4 spontaneous opening
- 3 opening to verbal command
- 2 opening to painful stimulus
- 1 none

GCS; Pediatric Modifications

- Child Verbal
 - 5 appropriate words
 - 4 inappropriate words
 - 3 persistent cry
 - 2 grunts
 - 1 none

- Infant Verbal
 - 5 coos & babbles
 - 4 irritable cries
 - 3 cries
 - 2 moans
 - 1 none

TBI Defined

- Mild aka 'concussion'
 - ≥1 period of transient confusion, disorientation or impaired consciousness
 - any period of observed or reported amnesia lasting <24hrs
 - signs of other neurologic or other neuropsychological dysfunction e.g. post-traumatic seizures, irritability, lethargy, or vomiting post head injury in young children
 - GCS ≥13 at time of first eval & GCS = 15 at ED discharge or at 24hrs post injury if hospitalized

TBI Defined

- Moderate
 - all of 'Mild' plus
 - motor GCS = 4 or 5 at 24hrs post injury or motor GCS = 6 but doesn't meet Mild criteria
- Severe
 - all of 'Mild' plus
 - maximal motor GCS < 4 in the 24hrs post injury

Pathophysiology

- Primary Injury
 - direct disruption of brain parenchyma
 - varies substantially based on mechanism

Baseline Care

Maintain appropriate analgesia/sedation

Continue mechanical ventilation; maintain adequate arterial oxygenation; PaCO₂ ~35 mmHg Maintain normothermia (<38°C)

Ensure appropriate intravascular volume status (CVP)&

Maintain Hgb > 7 g/dL (minimum); higher levels may be optimal based on advanced monitoring Treat coagulopathy

Elevate HOB 30°

Phenytoin or Levetiracetam/Consider continuous EEG monitoring throughout the management course Begin nutrition as early as feasible and treat hypoglycemia

- 'Baseline Care' AKA 'Tier 1'
 - Appropriate Analgesia & Sedation
 - Normoxia (SpO2 ≥ 95%; PaO2 90-100mmHg)
 - Eucapnia (PaCO2 35-40mmHg)
 - Aggressive Normothermia (< 38°)
 - Euvolemia
 - Normotension (MAP 50% for age)
 - Head of Bed ≥ 30° (if possible)
 - Prevent & Treat seizures
 - Normoglycemia
 - Normonatremia

Herniation Pathway

If signs and symptoms of herniation

- o Pupillary dilation
- Hypertension/bradycardia
- Extensor posturing

Emergent Treatment:

Hyperventilation titrate to reverse pupillary dilation

$$FiO_2 = 1.0$$

Bolus mannitol or hypertonic saline

Open EVD to continuous drainage

Emergency CT

or withdraw

aly for ICP > 25 mmng

To Surgery if Indicated

Kochanek 2019

Pre-Hospital Therapy & Guidelines

- The Guidelines 2003, 2012 & 2019
- Trauma Systems: good
- Airway & Breathing
 - Hypoxemia → Avoid
 - Field Intubation → ? (but if done, train & use EtCO2)
 - "Prophylactic" hyperventilation → Avoid
- Circulatory Support
 - Hypotension → Avoid
 - Defined: 5% for age >1 SBP = 70 + 2 x age (yrs)
 - Normotension → Ideal
 - Defined: Median for age >1 SBP = 90 + 2 x age (yrs)

Pre-Hospital Therapy & Guidelines

- Circulation/Disability
 - Cerebral Perfusion Pressure
 - MAP ICP
 - 40 50mmHg for infants & toddlers
 - 50 60mmHg in children
 - > 60mmHg in adolescents
 - Clinical Example
 - 2 ½ yo with an ICP ~ 20mmHg
 - 5% SBP ~ 75 mmHg \rightarrow MAP ~ 60mmHg CPP = 40mmHg
 - Median SBP ~ 95 mmHg → MAP ~ 70mmHg CPP = 50mmHg

Pre-Hospital Therapy & Guidelines

- Disability
 - Hyperosmolar Therapy
 - Hypertonic Saline
 - Mannitol
- Exposure
 - Temperature
 - 2 RCTs of Therapeutic hypothermia in Peds TBI
 - Both showed no difference in outcomes
 - Aggressive Normothermia is the current standard of care

Outcomes

- King County
 - Overall: 5% Hospitalized & 1.2% mortality
 - Of hospitalized: ~24% mortality
 - 'Health related Quality of Life' in moderate & severely Injured
 - Lower at 3, 12 & 24 months post injury
 - Some improvement at 24 months
 - Activities impaired at 3 months
 - Activities improved at 12 & 24 months but still quite impaired
 - Communication & self care impaired at 3 months
 - Communication & self care not improved by 24 months

Outcomes

- Risk factors for Poor (GOS ≤ 3) outcome
 - Rome Series (15% mortality)
 - GCS
 - Coagulopathy
 - Episode of Hypoxia or Hypotension
 - Early Post-traumatic seizures
 - Hyperglycemia
 - Paris Series (22% mortality)
 - GCS
 - Injury Severity Score
 - Hypotension on arrival

Key Points

- The primary severe TBI represents the onset of a cascade of secondary injuries
- Detailed management & manipulation of multiple organ systems in TBI patients is focused on preserving brain perfusion & thereby preventing secondary injury
- Preventing secondary brain injury after TBI is rooted in the ABCs
- Pre-hospital hypoxemia & hypotension have been associated with morbidity & mortality

Pediatric Traumatic Brain Injury

References

- Koepsell TD, Rivara FP, Vavilala MS, et al.: Incidence and descriptive epidemiologic features of traumatic brain injury in King County, Washington. *PEDIATRICS* 2011; 128:946–954
- Rivara FP, Koepsell TD, Wang J, et al.: Disability 3, 12, and 24 months after traumatic brain injury among children and adolescents. *PEDIATRICS* 2011; 128:e1129–38
- Kochanek PM, Carney NA, Adelson PD, et al.: Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents--second edition. *Pediatr Crit Care Med* 2012; 13 Suppl 1
- Kochanek PM, Tasker RC, Bell MJ, et al. Management of Pediatric Severe Traumatic Brain Injury: 2019 Consensus and Guidelines-Based Algorithm for First and Second Tier Therapies. Pediatr Crit Care Med. 2019;20(3):269-279
- Adelson PD, Wisniewski SR, Beca J, et al.: Comparison of hypothermia and normothermia after severe traumatic brain injury in children (Cool Kids): a phase 3, randomised controlled trial. *Lancet Neurol* 2013; 12:546–553
- Hutchison JS, Ward RE, Lacroix J, et al.: Hypothermia therapy after traumatic brain injury in children. N Engl J Med 2008; 358:2447–2456
- Chiaretti A, Piastra M, Pulitanò S, et al.: Prognostic factors and outcome of children with severe head injury: an 8-year experience. Childs Nerv Syst 2002; 18:129–136

