Diet and the Human Gut Microbiome: Whose Diet is It Anyway?

Johanna W. Lampe, PhD, RD
Nutritional Science, Dept. of Epidemiology,
UW School of Public Health
and
Public Health Sciences, Fred Hutchinson Cancer Research Center
Relationship of Diet and the Gut Microbiome to Health and Disease

- Disease Risk
 - Cancer
 - CVD
 - Diabetes

- Dietary constituents
- Fuel availability
- Energy imbalance
- Gut bacteria
Outline

- What are the gut microbes doing with our food?
- How does this affect what our bodies are exposed to?
- How might this influence disease risk?
Microbes and Disease

- **Microbes as infectious agents**
 - Account for ~20% of cancers worldwide
 - Cervical, liver and gastric cancers
 - Direct effects

- **Microbes as modifiers of physiology**

- **Microbes as modifiers of exposures**
 - Metabolize dietary constituents, drugs, carcinogens
 - Affecting energetics and obesity
The human diet is complex.

- 1000s of compounds
- Variety of methods of food preparation
 - Structure and particle size
 - Bioavailability to host
WE ARE WHAT WE EAT: Mammals and Their Gut Microbes Cluster by Diet

Ley et al., Science, 2008
Gut Microbial Metabolism -- Designed to make the most of the situation

- Fermentation
- Reduction
 -- nitrate, sulfate
- Esterification
- Aromatic fission
- Hydrolysis/deconjugation
 -- glycosides
 -- glucuronide conjugates

Food

Human digestion

The indigestibles

The leftovers

Bacterial metabolism
Distribution of Metabolic Pathways in the Gut Microbiome

Xenobiotic biodegradation
- phytochemicals
- pyrolysis products
- drugs

Fermentation of Carbohydrates: Production of Short Chain Fatty Acids

Acetate
Propionate
Butyrate + gases

Butyrate

- Serves as energy source for colon cells
- Increases satiety
- Reduces inflammation and oxidative stress
- Decreases tumorigenesis
- Improves gut barrier function

Microbial Metabolism of Proteins & Amino Acids

Proteins Peptides

hydrolysis

Aromatic Amino acids

α, β elimination

Aromatic

Other Amino acids

deamination

decarboxylation

Other Amino acids

deamination & fermentation

Sulfur Amino acids

Phenols and indoles

Ammonia NH$_3^+$/NH$_4$

Amines

H$_2$, CO$_2$, CH$_4$

Organic acids

Sulfur compounds

Adapted from Nyangale et al. J Proteome Res, 2012
Aromatic Amino Acid Metabolism: Conversion of *L*-Tryptophan to Indole

- Modulates expression of pro- and anti-inflammatory genes
- Strengthens epithelial cell barrier properties
- Decreases pathogen colonization

Bansal T et al, *PNAS* 2010
Sulfur Amino Acid Metabolism: Generation of Hydrogen Sulfide (H_2S)

Produced by gut bacteria:
- Fermentation of sulfur-containing amino acids (methionine, cysteine, cystine, and taurine)
- Action of sulfate-reducing bacteria on inorganic sulfur (sulfate and sulfites)

Impact on health:
- Toxic to colon cells both *in vitro* and *in vivo*
- Contributes to inflammation (UC and colon cancer)
Fecal sulfide concentrations increase with increased protein intake in a controlled feeding study.

- 5 male volunteers
- Randomized crossover study of 5 protein doses for 10 days each:
 - 0 – 600 g meat /d
- Measured fecal sulfide excretion

Microbial Conversion of Nitrate to Nitrite

Microbial Nitrate Reductase

\[\text{Nitrate} \quad \text{Nitrite} \]
\[\text{NO}_3^- \quad \text{NO}_2^- \]

\textit{N-nitroso compounds}
- nitrosamines
- nitrosamides
- nitrosoguanidine

\rightarrow

DNA adducts

DNA damage

Cancer Risk
Microbial metabolism important in production of trimethylamine oxide (TMAO).

- TMAO levels and choline and betaine increased after feeding phosphatidylcholine.
- Plasma TMAO decreased after antibiotics and reappeared after antibiotic withdrawal.

Tang et al. *NEJM*, 2013
Major Adverse Cardiovascular (CVD) Events Increase by Amounts of Plasma TMAO

- 4007 adults undergoing elective cardiac catheterization
- 3-y follow-up for major adverse CVD events.
- Increased plasma TMAO associated with increased risk of CVD.

Tang et al. *NEJM*, 2013
Dietary Bioactive Phytochemicals

Phenolics
- Phenolic acids
- Flavonoids
- Stilbenes
- Coumarins
- Tannins

Terpenoids
- Phenolic terpenes
- Carotenoids
- Saponins
- Phytosterols

Organosulfurs
- Thiosulfinates

N-containing compounds
- Glucosinolates
- Indoles

Adapted from Scalbert et al, J. Agric. Food Chem. 2011, 59, 4331–48
Gut Microbial Activity and Impact on Phytochemical Exposure

- Glucosinolates in cruciferous vegetables
- Isoflavones in soy
- Isoxanthohumol in hops
- Lignans in whole grains and vegetables
Is broccoli really all it’s cracked up to be?

Cruciferous Vegetables and Cancer

- Cruciferous vegetable intake shows most consistent association with lower risk of certain cancers:
 - lung, colorectal, breast, prostate, pancreatic cancer

- Isothiocyanates and indoles:
 - Are chemopreventive in animal models
 - Decrease inflammation and oxidative stress
 - Induce cell differentiation and apoptosis
 - Improve carcinogen metabolizing capacity
Isothiocyanates from Glucosinolates in Cruciferous Vegetables

\[\text{S-D-Glucose} \quad \overset{R-C}{\text{N-O-SO}_3^-} \quad \text{Glucosinolate} \]

\[\text{Glucose} \quad \overset{\text{Thioglucoosidase (Myrosinase)}}{\text{SH}} \quad \overset{R-C}{\text{N-O-SO}_3^-} \]

\[\text{HSO}_4^- \quad \overset{R-N=C=S}{\text{Isothiocyanate}} \]
Excretion of Total Isothiocyanates from Broccoli Sprouts

% of dose

0 20 40 60 80 100

Chewed Unchewed

Uncooked

Shapiro et al, Cancer Epidemiol Biomarkers Prev, 2001
Excretion of Total Isothiocyanates from Broccoli Sprouts

% of dose

0 20 40 60 80 100

Chewed Unchewed Cooked Myrosinase-pretreated

Uncooked

Shapiro et al, Cancer Epidemiol Biomarkers Prev, 2001
Inverse association between urinary ITC excretion and aflatoxin-DNA adducts: Wide variation in ITC bioavailability

- N=200, Qidong, China
- Randomized, parallel arm, 2-week trial
- 400 umol glucoraphanin/d vs. placebo
- Urinary ITC recovery 1-45% of dose

Isothiocyanate Recovery in Urine Ranged from 1 to 28% with 200 g Cooked Broccoli

Li et al., Br J Nutr, 2011
Fecal Bacterial Degradation of Glucosinolates In Vitro Differs by ITC-Excreter Status

- Low- and high-ITC excreters identified with standardized broccoli meal
- Fecal bacteria incubated with glucoraphanin for 48 h

Li et al., Br J Nutr, 2011
Microbial Production of Equol and ODMA

Daidzein → Dihydrodaidzein → Cis/Trans-isoflavan-4-ol → Equol

80-90% of individuals produce O-Desmethylangolensin

20-60% of individuals produce Equol
Soy Interventions
Equol-Producing Capacity Associated with:

- Greater lengthening of menstrual cycle follicular phase.
 Cassidy et al., *Am J Clin Nutr*, 1994

- Lower blood concentrations of certain estrogens, androgens, and cortisol, and higher SHBG and mid-luteal phase progesterone
 Duncan et al., *Cancer Epi Biomark Prev*, 2000

- Improved bone mineral density in post-menopausal women.

- Differential gene expression in peripheral lymphocytes of equol producers and non-producers.
Equol-Producing Capacity: Observational Studies

- Positively associated with better estrogen metabolite ratios in premenopausal and postmenopausal women.

- Breast density 39% lower in equol producers.

 Frankenfeld et al, *Cancer Epidemiol Biomarkers Prev*, 2004

- Significant interaction between soy intake and equol-producer status in predicting breast density in postmenopausal women.

 Fuhrman et al., *Cancer Epidemiol Biomarkers Prev*, 2008
Relationship of Diet and the Gut Microbiome to Obesity and Chronic Disease

- Energy imbalance
- Disease Risk: Cancer, CVD, Diabetes
- Gut bacteria

Diet → Fuel availability → Energy imbalance → Disease Risk
Gut Microbiota and Host Body Fat

- Conventionally raised and colonized adult mice, vs germ-free, mice have~ 40% more total body fat.

Bäckhed et al. PNAS 2004;101:15718-23
Intestinal Microbiota Transfer From Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome

- Significant change in fecal microbiota composition after infusion from lean controls.
- 2.5-fold increase in butyrate-producing bacteria in stool and intestinal biopsies.

Vrieze et al., Gastroenterol, 2012
Mechanisms Linking Microbiota to Obesity:

How could bacteria contribute to obesity?

- Stimulating dietary fat absorption in the small intestine.
- Providing increased energy to host as short-chain fatty acids.
- Causing systemic inflammation via lipopolysaccharide (LPS), an endotoxin from Gram-negative bacteria.

Semova et al., *Cell Host Microbe*, 2012
Summary

- Gut microbes metabolize a variety of dietary components.
- Diet as consumed is not necessarily that experienced by the host.
- Certain gut microbial communities may predispose the host to greater body fat gain.
- Gut microbiota mediate host metabolism and obesity through a variety of mechanisms that still remain to be elucidated fully.