WHAT'S “NEW-ISH” IN ARDS MANAGEMENT AFTER TRAUMA?

Bryce Robinson MD, MS, FACS, FCCM
Associate Professor of Surgery
Associate Medical Director, Critical Care
Harborview Medical Center
Department of Surgery
University of Washington
brobinso@uw.edu @traumabryce

DISCLOSURE

No financial disclosures to report

OBJECTIVES

1. Understand how ARDS develops in trauma patients.
2. Understand the effects of IVFs on hypoxemia
3. Review recent trauma blood trials with a focus on hypoxemia
4. Outline ongoing/upcoming trials.
A BRIEF HISTORY OF TRAUMA RESUSCITATION

TRAUMA DEATH IS TRIMODAL

HISTORY OF TRAUMA RESUSCITATION

- Hemorrhage = 30-40% of early deaths
- Early control of hemorrhage saves lives

HEMORRHAGIC DEATH

OTHER

Pre-hospital First 24 hours After 24 hours

Percentage of deaths

Percentage of deaths
HISTORY OF TRAUMA RESUSCITATION

• The ubiquitous use of blood transfusions to injured soldiers during WWII
 - Rh blood group system discovered, 1939
 - US American Red Cross collections, 1940
 - Breakdown of plasma components, 1940
 - Plasma recommended as the primary fluid for resuscitation
 - In the end, albumin over plasma due to risk of hepatitis
• By 1945, 13 million pints collected by Red Cross

BLOOD COMPONENT THERAPY

CRYSTALLOID AS A BLOOD ADJUNCT

Shires et al (1964) and 30 dogs
 - Best replenished with balanced salt solutions (lactated ringer’s) and blood
 - Vietnam War
 - Blood + IVFs = SOP
 - Rapid helicopter transport
 - Less renal failure
 - “Da Nang Lung”

DA NANG LUNG

"Bilateral Infiltrates"

ACUTE RESPIRATORY DISTRESS SYNDROME

The Lancet · Saturday 12 August 1967

ACUTE RESPIRATORY DISTRESS IN ADULTS

Ashbaugh D et al.

Lancet. 1967;2(7511): 319-323

“STANDARD” TRAUMA RESUSCITATION PARADIGM

Crystalloid 3:1 Ratio to lost blood

- Transient or no response
- Blood
 - 6-10 units PRBC
 - FFP, platelets, cryoprecipitate
- Crystalloid
PROBLEMS WITH THE "STANDARD"

The Lethal Triad

Acidosis
Hypothermia
Coagulopathy

Death

"Cool-Aid Effect" = ARDS AFTER TRAUMA

- A “Disease of Survivorship”
- Of those who survive major trauma
 - >70% develop acute lung injury
 - 30% of those with acute lung injury die
 - The majority die within the first week
- How can we prevent ARDS development?
- When it develops, how can we mitigate its demise?

WHAT IS ARDS IN 2016?

Ranieri V et al. JAMA. 2012;307(23):2526-33
CURRENT ARDS CARE

LUNG PROTECTIVE MECHANICAL VENTILATION

- SMALLER BREATHS AND LESS PRESSURE after ARDS Dx

- ARDSnet
- 10 centers
- 12 vs. 6-8 ml/kg Vt of PBW
- Mean plateau pressures of 33 vs. 25 cm H2O
- N=861

Outcomes
1. Death prior to discharge
2. Vent-free days in 28.

TABLE 4. MAIN OUTCOME VARIABLES.*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group Breathing Low Volumes</th>
<th>Group Breathing Tidal Volumes</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death before discharge home and breathing without resistance (%)</td>
<td>31.0</td>
<td>39.8</td>
<td>0.067</td>
</tr>
<tr>
<td>Bacteria without assistance up to 34 days</td>
<td>44.7</td>
<td>55.6</td>
<td>0.001</td>
</tr>
<tr>
<td>No. of ventilator-free days, days 1 to 28</td>
<td>12±11</td>
<td>10±11</td>
<td>0.007</td>
</tr>
<tr>
<td>Ventilation, days 1 to 28 (%)</td>
<td>30</td>
<td>11</td>
<td>0.45</td>
</tr>
<tr>
<td>No. of days without failure of respiratory organs or systems, days 1 to 28</td>
<td>15±11</td>
<td>12±11</td>
<td>0.006</td>
</tr>
</tbody>
</table>

*Death before discharge home and breathing without resistance and Bacteria without assistance up to 34 days were not significantly different between the two groups.
LESS CRYSTALLOID

- ARDSnet trial
- Conservative vs liberal strategy of fluid management
- Explicit protocol for IVFs/diuresis for 7 days
- N=1000 patients
- Primary outcome
 1. 60-day death
 2. Ventilator use
 3. Organ failure

Wiedemann et al. *NEJM* 2006

Table 1: Main Outcome Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conservative</th>
<th>Liberal</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days 0-1</td>
<td>19.0 ± 1.1</td>
<td>23.4 ± 1.8</td>
<td><0.05</td>
</tr>
<tr>
<td>Days 1-7</td>
<td>1.6 ± 0.1</td>
<td>2.3 ± 0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Days 8-14</td>
<td>1.6 ± 0.1</td>
<td>2.3 ± 0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Days 15-28</td>
<td>1.6 ± 0.1</td>
<td>2.3 ± 0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Days 29-35</td>
<td>1.6 ± 0.1</td>
<td>2.3 ± 0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Days 36-42</td>
<td>1.6 ± 0.1</td>
<td>2.3 ± 0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Days 43-49</td>
<td>1.6 ± 0.1</td>
<td>2.3 ± 0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Days 50-56</td>
<td>1.6 ± 0.1</td>
<td>2.3 ± 0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Days 57-63</td>
<td>1.6 ± 0.1</td>
<td>2.3 ± 0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Days 64-70</td>
<td>1.6 ± 0.1</td>
<td>2.3 ± 0.3</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Wiedemann et al. *NEJM* 2006
LESS CRYSTALLOID

CURRENT ARDS CARE

LESS CRYSTALLOID, MORE BLOOD

DAMAGE CONTROL RESUSCITATION

• DCR Definition:
 • Avoidance of crystalloid
 • Blood component therapy in ratios = whole blood
 • “1 to 1 to 1”
 • 1 unit PRBC to
 • 1 unit FFP to
 • 1 unit platelets
Transfusion related lung injury (TRALI)

- Definition: Acute lung injury that occurs within 6-72h of transfusion and is not related to other RF for ARDS.
- Mayo Clinic, retrospective eval of N=841 patients without ARDS at the time of MICU admission

Khan H et al. CHEST. 2007;131: 1308-1314.

PROMMTT TRIAL: RISK OF HYPOXEMIA

PROMMTT TRIAL: RISK OF HYPOXEMIA

PROPPR: RISK OF ARDS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>1.10 (0.89-1.35)</td>
<td>1.04 (0.86-1.26)</td>
</tr>
<tr>
<td>Sex (male)</td>
<td>1.80 (0.57-5.50)</td>
<td>0.80 (0.26-2.68)</td>
</tr>
<tr>
<td>Injury mechanism (surgery)</td>
<td>1.07 (0.88-1.30)</td>
<td>1.04 (0.82-1.32)</td>
</tr>
<tr>
<td>SAP at time of injury</td>
<td>0.12 (0.05-0.30)</td>
<td>0.18 (0.08-0.42)</td>
</tr>
<tr>
<td>ICU LOS +1st day (hrs)</td>
<td>0.88 (0.67-1.15)</td>
<td>0.89 (0.68-1.20)</td>
</tr>
<tr>
<td>Fever (°F)</td>
<td>1.08 (0.87-1.36)</td>
<td>1.07 (0.85-1.35)</td>
</tr>
<tr>
<td>ICU ARDS</td>
<td>1.08 (1.01-1.15)</td>
<td>1.03 (0.97-1.09)</td>
</tr>
<tr>
<td>Acute renal failure</td>
<td>0.96 (0.79-1.17)</td>
<td>0.98 (0.82-1.16)</td>
</tr>
<tr>
<td>Acute liver failure</td>
<td>1.12 (0.90-1.40)</td>
<td>1.09 (0.87-1.38)</td>
</tr>
<tr>
<td>WBC at time of injury</td>
<td>1.25 (0.99-1.58)</td>
<td>1.25 (0.99-1.58)</td>
</tr>
<tr>
<td>ICU ARDS</td>
<td>0.97 (0.79-1.20)</td>
<td>0.96 (0.78-1.18)</td>
</tr>
<tr>
<td>ARDS at time of injury</td>
<td>1.01 (0.88-1.15)</td>
<td>1.01 (0.88-1.15)</td>
</tr>
<tr>
<td>ICU ARDS</td>
<td>0.99 (0.85-1.15)</td>
<td>0.99 (0.85-1.15)</td>
</tr>
<tr>
<td>Inotrope given at the time of injury</td>
<td>1.25 (0.99-1.58)</td>
<td>1.25 (0.99-1.58)</td>
</tr>
<tr>
<td>ICU ARDS</td>
<td>0.97 (0.79-1.20)</td>
<td>0.96 (0.78-1.18)</td>
</tr>
<tr>
<td>ARDS at time of injury</td>
<td>1.01 (0.88-1.15)</td>
<td>1.01 (0.88-1.15)</td>
</tr>
<tr>
<td>ICU ARDS</td>
<td>0.99 (0.85-1.15)</td>
<td>0.99 (0.85-1.15)</td>
</tr>
<tr>
<td>Inotrope given at the time of injury</td>
<td>1.25 (0.99-1.58)</td>
<td>1.25 (0.99-1.58)</td>
</tr>
</tbody>
</table>

**2L!!

PROPPR: RISK OF ARDS

IVFs given 0-6 hours for those +/- ARDS (P<0.0001**).

WHAT’S NEW IN ARDS

PREEMPTIVE LOW TIDAL VOLUME VENTILATION
PREEMPTIVE LOW TIDAL VOLUME VENTILATION

- ARDSnet now PETAL
- Prospective, randomized trial
- “LOTUS”
- May 2017
- 48h of 6 mL/kg of PBW
- vs. standard of care
- Outcome
 1. Mortality
 2. Vent usage
- Trauma patients <10% of ARDSnet/PETAL cohort...

WHAT’S NEW IN ARDS

VITAMIN D REPLACEMENT

- Prospective, double blind control trial of Vit D replacement in those
 a. Vit D deficiency, \(\leq 20 \text{ ng/mL} \)
 - N=475 patients
 b. Severe Vit deficiency, \(\leq 12 \text{ ng/mL} \)
 - N=200 patients
- Single center study of ICU patients with low Vit D.
- Outcome
 1. Hospital LOS
 2. ICU LOS, 7 day, in-hospital, 6-month mortality

Amrein K et al. JAMA. 2014;312(15):1520-1530.
VITAMIN D REPLACEMENT

- PETAL
 - Prospective, multicenter randomized, trial
 - “VIOLET”
 - Spring 2017
 - POC Vit D testing
 - Supplementation of those with severe deficiency
 - 90 day mortality

OTHER ADJUNCTS

- Pronation therapy in severe ARDS works, probably

- PETAL – ROSE trial for early paralytics

- EOLIA trial (ECMO to rescue Lung Injury in severe ARDS) trial
 QUESTIONS?

Bryce Robinson MD
brobinso@uw.edu
Follow @traumabryce on Twitter

 SUMMARY

1. Crystalloid is bad
2. Blood is good
3. ARDS ventilation before ARDS
4. Take your vitamins (D)

 THANK YOU