Shock Recognition and Treatment

Frank Guyette MD, MPH
Associate Professor of Emergency Medicine
Medical Director, STAT MedEvac

Disclosure

• Employment: UPMC
 – ROC: Pittsburgh Resuscitation Network
 – DoD Prehospital Administration of Plasma (PAMPer)
 – DoD TXA in hemorrhagic Shock (STAAMP)
 – MedEvac Foundation
 – PEMF: Remote Ischemic Conditioning

Learning Objective

• Describe how to identify shock
• Delineate the categories of shock
• Discuss potential strategies for management
• Review current controversies in Shock
Shock

• Shock is a “reduction in tissue perfusion leading to cellular organ dysfunction and death.”
• “The rude unhinging of the machinery of life” - Gross
• Inadequate delivery of oxygen to tissues
• Early recognition of shock may be complicated by patient decompensation, medications, or premorbid conditions.

Mechanisms of Shock

- **Pulse Pressure (↓ CO)**
 - **Cardiogenic**
 - ACS
 - HF
 - Myocarditis
 - **Obstructive**
 - Tamponade
 - Pneumothorax
 - Pulmonary Embolus
 - **Hypovolemic**
 - Hemorrhage
 - Dehydration

- **Pulse Pressure (↓ SVR)**
 - **Distributive Shock**
 - Sepsis, Anaphylaxis
 - Vasodilation (Pipes)
 - Tachycardia
 - Neurogenic Shock
 - Vasodilation
 - Sympathectomy
 - Spinal Shock

Presentation of Shock

- **Hypovolemic** (Hemorrhage) Flat neck veins, tachycardia, pallor
- **Obstructive** Distended neck veins, tachycardia
 - Tension PTX- unilateral breath sounds, SQ emphysema
 - Pulmonary Embolus- Tachycardia, tachypnea, chest pain
- **Cardiogenic** Distended neck veins, tachycardia and cyanosis
- **Distributive** Flat neck veins, tachycardia, pallor
 - Sepsis- Fever
 - Neurogenic- pink skin and bradycardia
 - Anaphylaxis- Rash, exposure
Recognition of Shock

- SBP <90 mmHg
 - <110 mmHg (Elderly)
 - 70-2 (Age) in Children <10
- HR > 120 BPM
- SI (HR/SBP) > 0.9
- Lactate ≥ 4 mmol/L
- Findings of Decreased Perfusion
 - AMS
 - Skin pallor, mottling, or cyanosis
 - Cap refill >2 sec.
 - Urine output <30 ml/hr.

How is Shock Recognized?

- 82 y/o male, h/o HTN, unrestrained driver of car that struck guardrails. Immobilized; Head with 2 cm laceration; bleeding controlled; GCS= 15 with a patent airway. The patient has a severe laceration to the left arm. A bulky dressing is placed.
- Vitals: HR: 81 (NSR) RR: 20 BP: 109/74 SpO2: 100% on 15 L NRBM
- Is this patient in shock?
- What prehospital treatment would you order?

How is Shock Recognized?

- Patient was taken to the OR for operative management of extremity trauma.
- Found to have a Left PTX, Left 5-9 rib fx.
- C2 and C7 fractures.
- Patient required admission to the ICU for 26 days. Total LOS was 31 days.
Occult or Cryptic Shock

• Inadequate delivery of oxygen or nutrients to meet the metabolic needs of tissues with abnormalities in vital signs.

• What are abnormal vital signs?
• What adjunctive technologies can help us identify occult shock?
• What treatment should be initiated once shock is recognized?

Vital Signs: Blood Pressure

• What is hypotension?
• SBP <90?
 – Even a single episode of hypotension predicts increased mortality- Shapiro, JEM 2003
 – Low volume or delayed resuscitation for penetrating injury- Russell, J of Trauma 1992
 – Mortality of trauma patients presenting with a SBP<90 is as high as 65%

Controversy: What Blood Pressure?

• Dutton-SBP of 70 or pulse in hemorrhage
• Rivers-MAP of 65 or SBP 90 goal in EGDT
• Estridge- 110 for trauma
• Heffernan-120 for geriatric shock
• Spaite- 144 for traumatic brain injury
• SV varies as a function of Preload, Afterload and Contractility
 • Preload - Hypovolemia or ↓ SVR
 • Afterload - Obstruction or ↑ SVR
 • Contractility - Pump failure

CO = SV x HR

BP = CO x SVR

SBP → CO (Pump & Tank)
DBP → SVR (Pipes)

Pulse Pressure = SBP - DBP

Treatment of Hypotension

Blood Pressure
120/80 (92)
80/60 (66)
100/40 (59)

<table>
<thead>
<tr>
<th>↓ Pulse Pressure</th>
<th>↑ Pulse Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ SVR</td>
<td>↓ SVR</td>
</tr>
</tbody>
</table>

Rx = ?
IVF's

RX = ?
Pressors
Vital Signs: Heart Rate

• What is Tachycardia?
 – ATLS guideline: >100
• What conditions affect a tachycardic response?
• Does Heart Rate predict outcomes?
 – Bleeding? McGee, JAMA 1999
 – Injury Severity? Brasel, J of Trauma 2007
 – Mortality in hypotensive patients? Demetriades, J of Trauma 1998

Abnormal HR

• Elevated HR
 – Hypoxia
 – ↑ WOB
 – Hypotension/Shock
 – Hypoglycemia
 – Anemia
 – ↑ DO2 (fever, thyroid storm, exercise, etc)
 – Medications (Intoxication & Withdrawal)
 – Pain/Anxiety

• Low HR
 – Hypoxia
 – Meds
 – AMI (post, right)
 – Vasovagal
 – Hypothermia

Vital Signs: Respiratory Rate

• Commonly used in validated triage scales.
 – Revised Trauma Score (RTS)
 – Simple Triage And Rapid Transport (START)
• May be particularly useful when other tools are limited or not available.
 – Respiratory rate > 25 breaths/min is a useful triage tool.
 • Husum, J of Trauma 2003
Vital Signs: End Tidal CO2

- Can be used to assess perfusion during cardiac arrest.
- End Tidal CO2 less than 15 during CPR probably indicates ineffective CPR.

Vital Signs: Others?

- Shock Index (SI)
 - HR/SBP 0.5-0.7 Normal 0.8 or > is predictive of severe illness. (Rady, Ann of E Med 1994)
 - SI may provide a means to monitor acute hypovolemia and circulatory failure. (Rady, Resuscitation 1992)
- Pulse Pressure
 - Narrowed pulse pressure is an early sign of hypovolemic shock
 - Widened pulse pressure is an early sign of septic shock

Adjunctive Tools: Lactate

- Serum lactate is marker of organ oxygen supply/demand mismatch, and is directly related to mortality in patients with sepsis, myocardial infarction, and trauma.
- Prehospital lactate identifies a cohort of patients with normal initial vital signs who required intensive resuscitation during the first 24 hours of hospitalization.
Lactate

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Lac < 2.5</th>
<th>Lac ≥ 2.5</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Hospital Death, n (%)</td>
<td>1 (4)</td>
<td>23 (90)</td>
<td><0.01</td>
</tr>
<tr>
<td>Emergent operation, n (%)</td>
<td>1 (4)</td>
<td>22 (90)</td>
<td><0.01</td>
</tr>
<tr>
<td>Emergent vasopressor use, n (%)</td>
<td>1 (4)</td>
<td>22 (90)</td>
<td><0.01</td>
</tr>
<tr>
<td>Emergent blood transfusion, n (%)</td>
<td>7 (96)</td>
<td>9 (11)</td>
<td><0.01</td>
</tr>
<tr>
<td>MODS, n (%)</td>
<td>1 (4)</td>
<td>23 (90)</td>
<td><0.01</td>
</tr>
<tr>
<td>ISS, score (IQR)</td>
<td>4 (4-14)</td>
<td>10 (5-24)</td>
<td><0.01</td>
</tr>
<tr>
<td>Abbrev, score (IQR)</td>
<td>1 (0-2)</td>
<td>1 (0-4)</td>
<td>0.08</td>
</tr>
<tr>
<td>Length of stay, days</td>
<td>4 (2-7)</td>
<td>5 (3-32)</td>
<td><0.01</td>
</tr>
<tr>
<td>Admission to ICU, n (%)</td>
<td>58 (20)</td>
<td>138 (60)</td>
<td><0.01</td>
</tr>
<tr>
<td>Length of stay in ICU, days</td>
<td>9 (5-2)</td>
<td>2 (8-4)</td>
<td><0.01</td>
</tr>
<tr>
<td>pH</td>
<td>7.39 ± 0.3</td>
<td>7.31 ± 0.1</td>
<td>0.08</td>
</tr>
<tr>
<td>Base Deficit</td>
<td>2.8 ± 2.3</td>
<td>4.3 ± 3.3</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Base Deficit

- Base deficit is a marker of impaired oxygen utilization.
- The amount of acid that must be removed to return the body to a normal pH.
- >6 is considered markedly abnormal
- >8 is associated with a 25% chance of mortality — Rutherford, J of Trauma 1992

Tissue Oximetry

- Near infra-red spectroscopy may be able to determine oxygen consumption and delivery in peripheral tissue.
- Prehospital use of a vascular occlusion test (VOT) with tissue oximetry can predict mortality and the need for inpatient resources.
Tissue Oximetry

- The sensitivity of StO2 is increased by performing a regional stress test.

Heart Rate Variability (HRV)

- A measure of beat to beat variation which is associated with changes in the autonomic nervous system.
- As compensatory mechanisms are depleted heart rate variability decreases.
- Decreased HRV represents cardiac uncoupling and is associated with shock.
- Cardiac uncoupling is an independent predictor of death throughout the ICU stay and appears to increase in response to inflammation, infection, and multiple organ failure – Norris et al., Ann Surg 2006.
Heart Rate Variability (HRV)

- HRV measures can be used to predict which septic patients in the emergency department (ED) will progress to septic shock. - Chan and Kuo, Accad Emerg Med 2007
- HRV in trauma patients is a better predictor of survival than standard physiologic measurements (Vitals signs and GCS). - Cooke et al., J of Trauma 2006

Ultrasound

- Useful for the recognition of shock and for directing therapy.
- FAST is used for termination of care - Eckstein, PEC 2005
- FAST is used in the field as an adjunct to triage - Sztajnkrycer et al., PEC 2006
- FAST is used in a helicopter to direct treatment - Melanson et al., PEC 2001
- Systematic Review of Prehospital US in Trauma - O’Dochartaigh and Douma, Injury 2015
- Five Year Retrospective - O’Dochartaigh and Douma, PEC, 2016

Scenario

- You are consulted for a patient who struck a guardrail with his motorcycle. The crew notes that there is a large amount of blood running down the side of the gurney from the patient’s left thigh area. They have placed a tourniquet and the bleeding has slowed but not stopped.

- The patient is awake but not alert GCS 11, he has a BP of 68/32, HR 128, SpO2 not obtainable due to perfusion. The crew has placed bilateral IO’s and given 1L of NS.
Hypovolemic Shock for EMS

• Source Control
 – Tourniquets, T-POD, Splints
 – Hemostatic Agents (Quickclot, Combat Gauze)
 – Tranexamic Acid
 – Source Control
 • Obstructive (Tamponade, PTX)
 • Distributive Shock (Spinal, Neurogenic)

• Volume Resuscitation
 – Crystalloid is BAD, NS is Evil
 – Resuscitate to SBP 90 in penetrating injury
 – Hemorrhage: FFP first then PRBCs

Hypovolemic Shock for EMS

• Vasopressors
 – Rapidly titrate Levophed to 0.3 mcg/kg/min
 – If ineffective consider 2nd Agent
 • Vasopressin 0.04 u/min- acidosis, GI hemorrhage (may have to increase dose)
 • Epinephrine 0.05–0.15 mcg/kg/min- bradycardia, if in extremis there is no max dose

• Adjunctive Therapy
 – Ketamine (Sedation RSI)
 – Bicarbonate (pH <7.1)
 – Calcium (if giving more than 5U of any blood product)
Treatment of Shock: Obstructive

- Chest Wall Trauma, COPD, or Airway Manipulation plus any of the following:
 - Difficulty ventilating
 - Hypotension
 - Subcutaneous emphysema
 - JVD
 - Tracheal Deviation
- Manage the Airway
- Needle Decompress at the 2nd Intercostal space mid-clavicular line or 4th intercostal space mid-axillary line
- Repeat as necessary

Secondary Injury

Address the abnormal vital signs
- Hypoxia
- Hypotension
- Hyper or hypocarbia
- Hypothermia

Controversy: Treatment of Shock

- ABCs or CABs?
- Prevent secondary injury
- Determine the etiology of the shock state
- Resuscitation
- Deliver the patient to definitive care
ABC vs. CAB

- Approach may vary based on the presentation
- Patients who are peri-arrest benefit from CAB
 - Cardiac Arrest: Compressions first
 - Exsanguinating hemorrhage: control bleeding
- Patients with primary respiratory issues still require ABC
 - Even in these circumstances it may be beneficial to delay definitive airway management

Controversies

- Volume for Hemorrhagic Shock
 - Evidence for resuscitation to SBP of 70-90
 - Large volume fluids may result in:
 - Dislodged clot
 - Hypothermia
 - Hyperchloremic Acidosis (NS)
 - Dilutional Coagulopathy
 - Disruption of endothelium and inflammation
- Interventions vs. Transport to Definitive Care
 - Delay for IV access or therapy may outweigh benefit
 - Blood products are superior to fluids as initial resuscitative fluid

Fluid Resuscitation:

- Large Volume Crystalloids
 - Increase mortality
 - Worsen coagulopathy of trauma and TBI
- Hypotensive Resuscitation with Blood
 - Expensive, limited availability and storage
 - Patients remain coagulopathic and hypothermic
- Plasma or plasma derivatives
 - Treats coagulopathy
 - Increases survival as part of Damage Control Resuscitation
Controversies in Hemorrhage?

- STOP THE BLEEDING
 - External
 - Extremity: Direct Pressure, Tourniquet
 - Junctional: External Compression Device
 - Cavity: Direct pressure, hemostatic dressing
 - Internal
 - Reverse Coagulopathy
 - TXA
 - OR

Vasopressors

Vasopressors should be initiated if the patient has not responded to the initial volume challenge
- Distributive (Needed to increase SVR)
- Obstructive (only adjunctive)
- Cardiogenic (may be harmful 2/2 afterload)
- Hypovolemic (in conjunction with volume)

TXA – CRASH 2

- Prospective, randomized controlled trial
- Over 20,000 patients
- TXA significantly reduced all causes mortality from 16.0% to 14.5%
- TXA significantly reduced death from bleeding
CRASH-2: Timing of TXA

- Subgroup analysis of 20,211 trauma patients based on time of administration of TXA
- Timing: only deaths due to bleeding
- Risk of death due to bleeding reduced (5.3% vs 7.7%) if TXA given within 1 hour of injury. At 1-3 hrs after injury, also significant (4.8 vs 6.1%)

Take-Home Points

- Early identification and treatment of shock reduces mortality
- Normal vital signs does not = normal perfusion
- Treatment of shock varies by etiology (category)
- Treatment in the field should not delay definitive care

Take-Home Points

- Have an understanding of the diagnostic limitations and the use of fluids and vasopressors.
 - Clinical aspects of EMS = 40% of tests items
- Take home points
 - Cause of shock state is difficult to assess so standardized approach is needed
 - Volume resuscitation is dependent on etiology
 - Vasopressor options are limited
 - Accurate dosing of vasopressors is challenge for EMS
Acknowledgement

• Christian Martin-Gill MD, MPH
• Chris Schott MD, MS